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The grand canonical ensemble of a two-dimensional Coulomb system with _+ 1 
charges is proved to have screening phenomena in its high-temperature region. 
The Coulomb potential in a finite region A is assumed to be (--AA) 1, where 
AA is the Laplacian with zero boundary conditions on A. The hard-core con- 
dition is not assumed, The model is set up by separating (--AA) -1 into a short- 
range part and a long-range part depending on a parameter 2. The self-energies 
are subtracted only for the short-range part and therefore a choice of 2 is a 
choice of subtraction of self-energies. The method of proof is in general the same 
as that of Brydges-Federbush "Debye screening," except that here a 
modification for the short-range part of the potentials is needed. 

KEY WORDS:  Sine-Gordon field; Coulomb systems; Debye screening; 
cluster expansion; Mayer's expansion; decay of correlation functions. 

1. I N T R O D U C T I O N  

1.1. Brydges and Federbush (2) have proved that screening phenomena 
occur for a clssical Coulomb system in three dimensions. They considered 
systems of s species of particles. For simplicity, we describe their results for 
two species of particles with charges e = _+ 1. Let A ~ A' be rectangular 
regions in R 3. Let z~ A be the Laplacian A with zero boundary conditions on 
A. Let 

u(x, y)=(-JA)-l(x,  2t;2) l(x, y) 

Let 

V2.e,ej(X i, X j )  = e i e j (  - A A, + 2-2l~2)-  X(xi, x j )  + Wei, ej(Xi, Xj) 
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2 Yang 

In Ref. 2 the partition function in A' is defined by 

oo ~n 

ZA,A'=nY, O~.fA, dXl'"fAdxn Y~ e-~Ue - z w  
= el,...,en 

Here e i = __+ 1 for all i = 1, 2,.., and 

U = �89 E e ie ju (x i ,  Xj), m = �89 ~ ~)2,eiej(Xi, Xj) 
l<~i,j<~n l<~i~j<~n 

They considered the limit of the system when A' ,z R 3 and A z R 3. 
They proved the existence and exponential clustering of correlation 
functions of charge densities at high temperature under some conditions. 
One of the conditions is as follows, v2 is assumed to be decomposed as 
WN+W R, where wry>0, and there exists a constant B such that 
~'l <~i#j<n W N(Xi, Xj) ~ - Bn, for all n. 

1.2. We set up our two-dimensional Coulomb system by replacing 
R 3 by R 2, A = A ' ,  and we put Weiej=0. We prove, when A ,," R 2, the 
existence and exponential clustering of correlation functions of charge 
densities for all sufficiently small positive numbers 2 and all sufficiently 
small/~ depending on 2. 

If we put 

1 IAI 
z = Z exp fl - u(0, 0) + ~ log )212~ j 

where IAI is the area of A, in Section 2.2, we shall relate our system to the 
system defined by the infinite-volume limit of the system in A with the 
partition function 

ZA= . '  ~0-~. dXl.., dx. ~ e -~e 
= el,...,en 

where 

H= E (eieJ2Tc)log(2lD/IXi--xj[) if ~ e ,=O 
l <~i<j<~n i = 1  

= ~ i f  ~ eis~O 
i = 1  

This system, with 2 = 1, has been considered in Ref. 5. The 2 in Z3 can be 
changed to 1 by redefining the activity z to be z e x p ( - l o g  2/4r 0, so our 
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model differs from the model in Ref. 5 in the boundary conditions (which 
are Dirichlet instead of free) on the Coulomb potential. At present, the 
problem with free boundary conditions is much harder. For  a three-dimen- 
sional Coulomb system, free boundary conditions have been considered in 
Ref. 4. 

1.3. Since we set We,ej = 0, the short-range potential v2 in our case no 
longer satisfies the condition described in 1.1. We cannot use the same 
criterion as the one in Ref. 2 for the convergence of Mayer's expansion for 
the short-range potentials. Instead, we use an "iterated Mayer expansion" 
and a criterion for its convergence from Ref. 3 to deal with our short-range 
potentials. The rest of our proofs, including the long-range potentials and 
the combination of the two parts of potentials, are based on the same 
arguments as those in Ref. 2. Our development is thus parallel with that of 
Ref. 2. We assume reader is familiar with the proofs in Ref. 2. 

2. DEFIN IT IONS OF THE SYSTEM A N D  THE M A I N  RESULT 

2.1. Let A be a domain in R 2. Let A be the Laplacian in R 2 and A A 
be A with zero boundary conditions in A. For  any )L > 0, we define 

u(x, y )=( - -AA)- I (x ,  y)--(--ZlAq-~ 21D2 ) !(X, y) 

w(x, y)=(-aA+,~ 2tD2)-'(x, y) 

For A c R 2, we consider the grand canonical ensemble of particles 
with charges + 1 or - 1  defined by the partition function ZA, 

ZA= ~ dx~.., dx, Z e ev,, 
n~O e I ...e n 

Here e i=  _+l, V n = U + W , a n d  

U =  1 Z CiCjH(Xi,  Xj),  W =  1 Z c i c j w ( x i ,  x j )  
1 ~ i , j ~ n  1 ~ iv~j~n 

We choose 1D = (2~fl) 1/2; lD >/0 is called the Debye length. We note 
that our system can be fit into the framework of Ref. 2 if we replace v2 in 
Ref. 2 by our eiejw(xi, xj). (In Ref. 2, two boxes A and A' are considered. 
In our situation, because of charge symmetry, it is sufficient to consider 
only one box A.) 
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Let ae(X ) = Zi 6x(xi) 6e(e,) be the density of charge e at x. Let J ( x )  = 

Ze eae(X) be the total charge density at point x. If A is a functional of ae, 
we shall write 

I(A)= ~ e-~V~A 
n=0  

(A)A =I(A)/I(1), Z=I(1)/Zo 

where Z 0 = I(1 ) calculated with u set to 0. We shall obtain the infinite- 
volume limit ( A )  by letting A /* R 2. 

2.2 ,  

then 

Let [A] be the area of A. If we put 

z = s exp fl{ -u (0 ,  0 ) +  (1/4~)log(lAl/2212zr)} 

Z A= ~ dxl . . ,  dx, Z e-~I4(A 
n=O el ""en 

where 

( 
H(A) =(1 /2 ) l i~ i e i e jFu(x i ,  xj)-(1/4~)1og(lAl/22/2DZr ) + w(xi, xj)] 

( ;  } + (1/4~)log(lAI/221~) 2 f, +2 [u(xi, xi)-u(0, 0)] 
i 

If we take A to be the disc with radius 21Dl and center at origin, then 

1 
1 log ht(x, y) (2.1) 

(--AA) l (x ,  y ) =  l og  Ix--yl 2lDl+ Ixl 

where, for all x, hi(x, y) is the harmonic function of y e A  such that 
(-Am) l(x, y ) =  0, for all y eaA. By the maximum principle of harmonic 
functions, 

]h,(x, y)l ~ log 21Dl-- Ixl - -  

We shall also use the following facts: 

1 1 
log (2.2) 

2~ 21Dl + Ix[ 

l i m [ ( - - A A + 2  2/D2 ) l(x,y)--llog~]=La(y), 
x ~ y  

(2.3) 
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where LA(y) is finite for all y e A ,  

1 
lira L A ( y ) = ~  (log 2--7) as A 2' R 2 

and 7 is Euler's constant. 
By (2.1) (2.3), we can prove that 

lim [u(x, x) - u(O, 0)] = 0 
l ~ c o  

lim I u ( x , x ) -  1 IAI 7 1 ,-~ ~ ~ log 2 2 l ~ j  = ~  (log 2 -  7) 

lim H ( A ) =  1 i~jeiej 2lo ~ ~ - ~ - l o g l x i _ x j ]  if ~ e ~ = 0  

-----00 if ~ e i r  
i 

Intuitively, these mean that the infinite-volume limit of our system is a 
description of a neutral system, i.e., Y'. e~--- 0, with pair interacting potential 
(1/27r)log(21o/lx-yl) (see, e.g., Ref. 5). This system depends on 2. The 
appearance of 2 may be explained as follows. The two-dimensional 
Coulomb system is parametrized by an inverse temperature /~ that is 
dimensionless and an activity z with dimension length -2. If we use the 
Green functions of the Laplacian in R 2 to define the Coulomb potential, an 
ambiguity arises. There is a one-parameter family (2~c) -1 log L/ Ix - y ]  of 
Green functions, where L is a length. A choice of L will set a length scale so 
that zL 2 is a dimensionless measure of the density. The choice of L in the 
Green function amounts to a choice of how to subtract self-energies in the 
free boundary conditions case because 

y, eiej(2~) - 1 log(L/lxi - xjl) 
i < j  

= Y, eiej(2rt) l log(1/ lxi-xj l )+ ~ eiej(2~c) -~ l ogL  
i < j  i < j  

and since Z e~=0, the second term equals -2-1n(2~z) -1 log L, which is 
proportional to n and therefore it is a self-energy (or equivalently a 
redefinition of z). This ambiguity in the Green function surfaces as an 
ambiguity in how to define and subtract self-energy in the Dirichlet case. If 
the self-energies are omitted, the partition function is divergent. Therefore, 
it is important to write the potential in our form U +  W. 
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2.3. In the rest of this paper, we consider A to be reetfigular regions. 
We consider observables of the form Ax = S,ax J ( Y ) d y ,  where Ax is the Unit 
lattice square that contains x ~ R 2. 

T h e o r e m  2.1. Let d be the distance of A x and Ay such that d >  lo. 
(a) There exists a constant 2o such that for all 2, 0<2~<2o,  and all 
sufficiently small/3 depending on 2, we have 

(i) The infinite-volume limit exists, 

l i m 2 ( A x ) A =  ( A x ) ,  a l i m 2 ( A x A y ) A =  ( A x A y )  

(ii) The system screens, i.e., there exists a constant c independent of/3 
such that 

[ ( A x A y ) -- ( A x ) ( A y ) [ ~ c2 exp(-d/2lD) 

(b) For any l ' >  lD, there exists a constant 20(/' ) such that for any 
0 < 2 ~< 2o(/'), the system has screening length l' provided/3 is smaller than 
a constant /3o(2). Here /3o(2 ) tends to zero as 2 tends to zero, and 2o(l') 
goes to zero as l',L lb. 

Our method of proof also yields the existence of the infinite-volume 
limit for a product of more than two A's. When ~ or/3 is zero, Theorem 2.1 
can be proved by explicit computation. From now on, we assume ~ and/3 
are positive. 

3. S I N E - G O R D O N  T R A N S F O R M A T I O N  A N D  THE 
S H O R T - R A N G E  PART 

3.1. Sine-Gordon transformation. Let d#o(~b) be the Gaussian 
measure with mean 0 and covariance u. Let 

U 

el  - - - e n  i =  1 

We apply the sine-Gordon transformation (see, e.g., Ref. 2) to obtain 

1 
Z = = Z A = ~ dpo(O) e m (3.2) 

Lo d 
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Let ~e(X)= exp[ifimqk(x)e] - 1. By Mayer's expansion, 

M ( ~ ) = -ft. dx l . . . dxs 
s = l  

P e l  . . . . . . .  ( X l  . . . . .  X s )  ( I  %(xi) (3.3) 
el  " ' e s  i =  i 

Pel ....... (Xx ..... Xs) 
Y 

= , ~ s  (t-Z-s)! fA d X s + l ' " f A  dx, ~ (e -W) ,  (3.4) 
es + 1 - �9 �9 el  

(e w),. is the Ursell function of e x p [ - ( f i / 2 ) Z i ~ j  eiejw(x~, xj)]. 
Theorem 3.1, Theorem 3.2, and (3.7) imply that (3.3) is a convergent series 
uniformly in A if 2 is sufficiently small and fl < 4rr. 

For  d(~b) a functional of ~b, we define 

I(~4(~b)) = f dgo(~b ) eM(r (~r = Z - ' I ( d (~b ) )  (3.5) 

The above p's are called truncated correlation functions of the system 
with pair potentials e i w ( x ,  xj)ej. In Section 3.2, we shall show that the 
limit of Pel ....... (x~ ..... Xs) as A ,~ R 2 exists, for distinct x l ,  x2,..., Xs. We also 
denote the limit by Pel ....... (Xl,..., Xs). Both P+l and p 1 are independent of 
x when A / ' R  2. We write 7D = (2p+lf l)  -1/2. The second term of (3.20) goes 
to zero uniformly in fl, 0 ~< fl ~< 2re, as 2 goes to zero. Therefore, 

lim ~r D = l D (3.6) 

uniformly in fi, 0 ~< fl ~< 2re, as 2 ~ 0. 

3.2. The short-range part. For  our short-range potentials, we shall 
obtain estimates analogous to the estimates in Appendix 1 of Ref. 2. We use 
an "iterated Mayer expansion ''(3) of the truncated correlation function p, 
and obtain a sufficient condition similar to (A1.6) of Ref. 2 for convergence 
of the expansion. 

Let T' be the set of all tree graphs on { 1 ..... t }. Let 1 ~< s ~< t and t/~ T '. 
By removing branches of the tree that contain no vertices of 1 ..... s and also 
removing vertices s + 1 ..... t that join exactly two lines, a unique minimal 
augmented tree graph ~/A of order s is determined. We denote the set of all 
minimal augmented trees of order s by A s. We write r/e r/A if t /determines 
t / A  . 

Let al ..... as be lattice squares in RZ. For any t/~ T', we define 

L , = L , ( a j , . . . ,  a~)=inf  ~ d ( x ,  xj) 
i , j ~ q  
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where the infimum is taken over the set x s e a s, for j = 1, 2 ..... s, and xj e R 2 
for j = s + 1,..., t. We note  that  L~ = L,A. A useful proper ty  of L,A is 

e x p [ - -  ~L,A(al . . . . .  an)&] ~C~ -1 (3.7) 
a2,...,an 

for some c a where ca ~ 1 as e ~ oo. Here the ai are lattice squares of size 
To. 

For  7 >  1, we write w = Z ~ = 0  w IK), where 

w(K)= (--3A -}-~2K~ 21D2 ) -  1 ( _  AA + 72K+ 2~v 21D2 ) -  1 

W {'v) has the stability property:  Let  B~'V)= fl log  ?/4~z; then 

eiesfiw(m(xi, x s) >~ - n B  (~) 
l < ~ i ~ j ~ n  

= B (t~ and We define B ~K ~2f=o 

[[w(ml[= = f [w(K)(0, x)[ exp(c~ Ix[/TD) dx 

Ilw[l= ~ Ilw(~)ll=exp(2B<'X) 
K - - 0  

By Theorem 2.5(a) in Ref. 3, when 1 ~< s ~< t, and  2 ~< t, 

(e-W)c(xl,..., x , ) =  ~ O,a(t) (3.8) 
rlA ~ A s 

Q,A(t) = E E I~ " {K~ ( e [ - e i e j w  , xj)fl] j dP,,K(r) (3.9) W(r) 

q ~ r l A c ~ T  t K i j ~ l  

Here K =  (Ko), ij~ ~h and dP,,x(r) is a probabil i ty measure depending on t/ 
and K. Here W(r) is an interacting potential  depending on r. 

By Theorem 2.2 in Ref. 3, if t>~2, ]Q,A(t)[ is bounded  by 

Z Z FI [flw(~~ xj)[ exp(2B ~ )  (3.10) 
ri ~ rl A n T t K ij ~ tl 

We put Q ,A(1 )=  1 and define, for s~> 1, 

o9 ~!  

~IA ....... ~ Z f A  [gel ( X l ' ' ' X s ) =  t d X s + l " "  d x t  ~', Q,A(t) ( 3 . 1 1 )  

es + l,...,et 

By (3.4) and (3.11), 
r/A Pe] ....... (Xl ..... Xs)= E Pel ....... (Xl ..... Xs) (3.12) 

r/A ~ ..,t s 
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Let ax,..., a, be lattice squares of size T D. We shall 
following quantities. For  r/AE A s, we define 

1 

rl A 
Pel  ....... ( x l  . . . . .  X s )  ~el ( x l )  ~ " Ees(Xs)  

estimate the 

(3.13) 

The estimates for 
theorems. 

g(al, . . . ,  a s ) =  ~ g,A(ai ,..., as) (3.14) 
qA 

ks(ai)=fmdxi'"fmdxslPe~ ....... . ( X l  . . . . .  "X's) ' (3.15) 

r/A k,7~(ai)=faldXl'"fmdxslPel ........ ( X l  , ' " ,  X s ) '  (3.16) 

(3.13)-(3.16) can be easily obtained by the following 

T h e o r e m  3.1. If ~=4e~f t  HwH < 1/2, then there exist constants b,~ 
and c~(~) such that  

b,A ~> 0, ~ b,~ = 1 
r/A 

]k~(ai)l <<. c~(e) b,A exp[--~L,A(a~)/'[D] 

c,(e)-<T 2 2s I K'/eft Ilwll - -  D " 

T h e o r e m  3 . 2 .  For  any c~, if 0 ~< c5 < 4n, then ~r ~ 0 uniformly in ~,/3, 
0~<ft~<8, as 2 ~ 0 .  

Remark. In view of Theorems 3.1 and 3.2, from now on we always 
choose 2 so small that  we can set ~ = 1. 

Corollary 3.3. g,A(al ..... a,)  is bounded by 

T~,2"+ XKs(llwll eft) lb,A exp(--~L,A/~rD) (3.17) 

Proof of Theorem 3.1. We shall prove the theorem for TD = 1. For  
general To, the proof is straightforward. When x i~a~ for i =  1,..., s and 
xi ~ R 2 for i = s + 1,..., t, we have 

I ]  exp(c~ Lxi- xs]) >~ exp(c~L,A) (3.18) 
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Applying bounds (3.10) and (3.18) to (3.16), we get 

[knA(ai)l~t>~2,t>~s(t_s)!faldXlfAdX2""fA dxt 

• Z Z 2 I1 xj)l 
es+l, . . . ,e t  q e q A ~ T  t K i j ~ r  I 

x exp(c~ Ixi-x:l)exp(2B<'K,)exp(-c~Ln~)+2~61(s) (3.19) 

Integrating over dx~,..., dx, and summing over e,+~ ..... et, we get 

~ t f l t - -  1 

Ik,~(ai)l ~<2s ~ ~ Ilwll' 12t-sit-2 
t>~2 , t>~s  

x ~, t 2 - '  e x p ( -  c~L,A) (3.20) 
rl E rlA ~ T t 

We use t! / ( t -  s)! s! <~ U, for all l<<.s<<.t, and Stirling's formula; 
Ik,~(a~)l is bounded by 

2zc51(s)+Z-Stds! (I]wll/3e)-1(1- ~c)-Ib,~ e x p ( - e L , ~ )  (3.21) 

where 

By Cayley's theorem, 

bn~ = Z Kt-~(1- to)  Z t2- '  
t ~ s  r l ~ r l A ~  T 1 

r] A f ~ S 

By the assumption ( 1 -  ~c) 1< 2, (3.21) implies our theorem for s/> 2. For 
s = 1, our theorem also holds because, again by (3.21), 

]k,A(ai)l ~< 6~< 2s! ~cs(l[w[I fle)-'b,~ exp(-c~L,~) 

Proof of Thoorem ,3.2. Let I[#[I be the same as [Iwll but with 7D 
replaced by lb. Let ~ = 4e~/~ HwH. By the same argument as in Theorem 3.1, 
if ~ < 1/2, then 

tk~(ai)l ~< Cs(~) b,~ exp[--  c~L~A(ai)/lD] (3.22) 

By the definition of 7 o, (3.22) implies that if ~ < 1/2, then Tn ~> cID, 
where c is a constant independent of ~,/~,2. Therefore, to prove 
Theorem 3.2, it is sufficient to prove an anlogous theorem for ~. 
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We shall prove the theorem for the case lD = 1. The proof for general 
lD is straightforward. 

Let c = 2  1l~. Since 

Iw(K)(0, Y)I ~< (log 7)(2~z)-1 exp( -c7  x l Yl) 

it follows that ]lw(X)l[ ~ is bounded by (2 log 7)(~-cTK) -2. 
For any ~, we can choose 2 so small that c >  2~. Then (cy ~:- c~)2>~ 

(c7X/2) 2. Recall 

B ~) = (/3 log 7)/4rt, B ~/~ = (4re)-~(K+ 1 )]3 log 7 

Therefore, ]1~]] may be bounded by 

c 281og~ ~ ~ 2~expl-(27z) l ( K + l ) / ? l o g y ]  
k = 0  

c-28(log ~/) 7 ~/2~ = 7(Kf l /2x)  2K 

K = 0  

Since/~ ~< 6 and ~ < 4~, the above series converges, and I[wl] is bounded by 
c-28(logT).f/2~(l_7 2+~/2=)-~, which goes to zero uniformly in 
fl, O<<,fl<~cS, as 2 goes to 0. 

Let x ~ R 2 and Ax be the unit lattice square that contains x. We define 

Ilwtl"= max{ Ilwll, Itwll'2} 

Using the same method as that in Theorem 3.2, we can prove that 
~c"=4e~fl Ilwll" goes to zero, uniformly in ~,fl, for 0~<fl~<6, 6<2rc, as 2 
goes to zero. For the next theorem, we let d =  dist(A~, Ay). 

T h e o r e m  3.4. Suppose 0<f l<27r  and d>~l D. There exists a 
constant c(fl) such that, if 2 is sufficiently small depending on c~, then 

1 rl A X 

A x  A j,, 

<~ c(fl) Cs(~) b,A exp[---c~L,A(A~, Ay)/TD] (3.23) 

Here c~,(c0 ~< 2s! (~c")S/efi(llwli') 2 and c(/3)< Go as/3 ~ 0 .  

Proos We see that (3.23) differs from (3.16) only in the domain of 
the integration. By (3.10), (3.23) is bounded by the right side of (3.19), with 
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L,~(ai) replaced by L,~(A~,Ay), and (al, A,...,A) replaced by 
(A~, Ay, R2,..., R2). Therefore, to prove the theorem, it is sufficient to prove 
(for 7"D = 1) that there exists c(/~) such that 

~ f,j dxl ;,j dx2.., fR dx, 1~ t~w(K'i)(xi, xj)l 
K e s + l , . . . , e t  x y 2 i j E r l  

x exp(~ [xi- xjl) exp(2B ~<K')) 

is bounded by 

(3.24) 

c(~)( II wll " ) ' -  2/~,- 12, -s (3.25) 

for all t/~ r/A ~ T t. To prove this, we consider the following two cases. 

If there is a bond between 1 and 2 in r/, then (3.24) is boun- Case 1. 
ded by 

with 

/~' i Ilwll t 2c'(w) (3.26) 

c'(w) = (27z)-l(log 7) exp[fl(2~) 1 log 7] 

x y '  exp(K/? log 7/2rc) exp[ - (d/lo)(TK/2 - c~)] 
K 

If we choose 2 ~<min{7/2c~, 1/4} and d>~lD, then 

c'(w) ~< c(/~) = (2rr)-l(log 7) exp[(2rc) 1 log 7] 

x ~, exp(K/~ log 7/2zc) e x p ( -  7x/2) 
K 

c(/?) < oo for all 0 ~</? < 2re and tim c(/~) = c(0), as/~ goes to zero. 

(3.27) 

Coso 2. If there is no bond between 1 and 2 in r/, we use the Schwarz 
inequality to get an upper bound for (3.24) by 

/3'-t(llwH') 2 Ilwll' 3 (3.28) 

In both cases, (3.24) is bounded by (3.25). 
Using the same argument as that in Theorem 3.4, we also obtain the 

following estimates. Let 

f(d) = ~_, exp(kfl log 7/2rc) exp(--dTK/21o) 
k = O  

(3.29) 
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Suppose 2 ~< min{7/2c~, 1/4}; then 

r/A 
)R2dx3' ' 'JR 2dxs Pel ..... ..... Xs)t 

. .~f(Ixl-x2])c~.(~)b,~exp(-c~ ]xl x2fffD) (3.30) 

We note that f (0 )  = Go and f (d)  < oe if 0 ~</~ < 27t and d >  0. A useful 
fact is that 

fof( r)dr<oo if 0~<3<2rc (3.31) 

4. THE L O N G - R A N G E  PART 

We shall prove Theorem 2.1 by applying the cluster expansion and 
Peierl's expansion to the long-range part of the potentials. The proofs are 
almost the same as the proofs in Ref. 2 except that we replace (1) the three- 
dimensional objects by analogous two-dimensional objects and (2) the 
estimates in Appendix 1 of Ref. 2 by the estimates in Section 3.2. We set 
?'t) = 1 in this section. The expansion for general 7D is straightforward. 

4.1. Peierl's expansion. Let A be a rectangular domain that is a 
union of closed unit squares. In this paper, lattice squares mean closed 
lattice squares. Let L ~ 1 ~ L'. Let {s be lattice squares in A with size L, 
and {As} be unit lattice squares in A. Let z = 27cfl -I/2. Let h be a function 
on R 2 with values integral multiples of r, such that h is constant on the 
interior of each s and zero on A C. The Peierl's contour ~2(h) of h is the set 
of all discontinuities of h. Let "~A(h) be the set of unit lattice squares in A 
whose distance from Z(h)  is less than L'. We set 

A ~ = L - 2  I_ O(x) dx 

(5(x) = (b(x) - As(x) for x e s 

Let g = gh be a function on R 2 depending on h. We perform a trans- 
lation ~b = 0 + g. We define the following covariance Co and C: 

Co 1 = u-1 +~r~ 2 (4.1) 

C -1 = Co 1 + v (4.2) 

= 2 c  o (4 .3 )  

where V/2=Y~e,e2flele2Pe,,e2(Xl,X2)/2 is the quadratic part in 0 of 
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M(O + g). Let d# be the Gaussian measure with mean 0 and covariance C. 
Then 

Z =  Y" N f d#(O) eEeae R (4.4) 
h 

N = f d p o ( l ~ ) e x p ( - 2 - 1 ~ r D 2 f ~ t 2 - 2  1 Ov~9) (4.5) 

E = M ( ( ~ ) - ~ , p e  f G(x) dx + 2-' f ~v~ 
e 

(4.6) 

Let ~or = exp(ifll/2eO) - 1. Then 

eG = exp { ~ p e f [ co e( (~ ) - ifl'/2 e(~ + fl~22 - ~ ] 

r r (A)=exp  ~,,eCO~(A)L 2 ~ exp[-L2(A-n~)2/2~[~] 
~ e ~ t t  

R = -- Fj -- Fz 

(4.7) 

(4.8) 

(4.9) 

F l = 2 - 1 7 ~ 2 f  ( g _ h ) Z + 2 - 1 f  g u lg (4.10) 

F2= f OCo~(g - g,) (4.11 

The above integrations o n  R 2 are over A. 
By (7.19) of Ref. 2, which works also for the two-dimensional case, it is 

possible to define g such that: (1) g =  h outside Z A. (2) Inside any connec- 
ted component of ~]A, g depends only on h inside the same component. (3) 
g is in the domain of Co 1. (4) f O C o l ( g -  go) can be estimated to be small, 
in the sense of Proposition 5.4. 

4.2. The cluster expansion. We shall use the same expansion 
formula as that in Ref. 2. We use the following notations. 

For a fixed h, let Y= Y(h) be the set whose elements are either connec- 
ted components of ~_.A(h) o r  closed unit lattice squares in A\interior of 
~_.A(h). Let )5 be a sequence of sets Y1, I12 ..... Yn, where II, is union of 
elements of I" and Yic~ Y j = ~ ,  for all i r  We let X1 = Y1, 
Xi= Y iwX~_t ,  and X n = X .  For any Y e A ,  we write YC=A\Y .  By d#s(O) 
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we mean  a Gauss ian  measure  with mean  0 and covar iance  C(x, y, s)= 
p(x, y, s) C(x, y), where 

p ( x ,  y ,  S)  -~- Z S iS i+  1 " ' ' S j _ l l i ( x  ) l j ( y )  
l<~i<j<~n+l  

+ sjsj+l ""s,_1 1,(x) l j (y )  + ~ le(x) l i (y )  
1 ~ j< i<~n + 1 1 <~i<~n+ 1 

(4.12) 

Here  l~(x) is the characterist ic funct ion of Y/, 1~ + l (X)  is the characterist ic  
function of (UT= 1 y,)c, and s ,  = 0. 

We put,  for a sequence of unit lattice squares a~, a2 ..... at, 

e(a, ..... at)=T., Z dxl...Jodx, 
el,...,et 1 

X Pel  ....... (Xl,--., Xt) e<(Xl)''" Se,(Xt) (4.13) 

By the definition of E(A), E(A) m a y  be wri t ten as a sum of terms of 
g(al , . . . ,  a,) and a term where ee(X) is replaced by t~efl 1/2 when t =  2. We 
define E(Y) to be the same sum of 8(al , . . . ,  at) as in E(A), but  ag must  be in 
Y, for all i. The  te rm E(X, s) is the same sum of terms as added  to E(X), 
but  each term 8 ( a l  ..... an) is mult ipl ied by l~,~si ,  where i e I  if 
1 ~< i ~< n - 1 and  if there exist e, fl such that  1 ~< e, fl ~ t, a~ c Yi+ 1, a,~ c X~. 

As in Ref. 2, we define the following opera tors :  

n - I  

~c(f~, s)= 1] to(i) 
i=1 

d dx f dy 

•  7 i)(a-g7 + ; j  

We write Y' ~ Y if Y' c Y and Y is the smallest  union of sets in ~- that  
contains  ]I'. The  Eu)(X, s) contains  g(al,..., at) in E(X, s) with the same 
mult ipl icat ion of s, and if U~: = 1 ak\Xi'< Yi+I. The (i) on the bracket  means  
that  when we expand  the bracket  into four terms, in each term, if there are 
sequences al,... , at and a'1,..., a'r contr ibut ing to E(X, s)'s, the sequences 
must  satisfy (U~_ l  ak) W (U~ =1 a'k)\Xi ~ Yi+ 1. 

822/49/I-2-2 



16 Yang 

Let d be a functional of ~b, periodic in r. By Section 8 of Ref. 2 the 
expansion formulas are as follows: 

1 
~oo I(~r = ~ JZ(X) Z'(A, X) (4.14) 

x 

~u(x)=EE f ds f d~(~)eE(X'~)K(Y's)e~ eR(X)d (4.15) 
h 

Z'(A, X) =~ N f d#(~) e E(x') eG(X') e R(x') (4.16) 
h 

In (4.14), X runs over all unions of lattice squares. In (4.15), y is a 
sequence of sets YI ..... Y,, where the Y; are disjoint and I,J~_ 1 Yi = X. For a 
fixed )5, we sum over all those h such that )5 is compatible with h and Y~ is 
the smalles union of sets in Y(h) that contains the support of d .  

5. C O N V E R G E N C E  OF THE E X P A N S I O N  

5.1. We shall prove that our expansions of Section 4 converge in the 
following sense. Let A~, i = 1  ..... w~ be unit lattice squares and ai, 
i = w 1 + 1 ..... wl + w2 be lattice squares of size 7" D. Let X~ be the minimal 
union of lattice squares of size 7" g that contains (J Ai w ai and Xo = 0 ai. The 
notation IX[ means the number of lattice squares of size 7 D in X. We 
consider ~r of the following form: 

~=I~ f~ exp[ifll/2~(xi)ei] ~ fajee/(xj)~(xl ..... Xw,+w2) 

We shall fix 81 such that 0 < 81 < 1/2. 

(5.1) 

T h e o r e m  5.1. If 2, L are sufficiently small and L' is sufficiently 
large according to 61, then for any c3 > 0, there exist c3, cA (independent of 
fl) such that 

[J~ff(X)[ exp(c] I / I )  

c~ ~+w2 I1~11 pix01/2 exp(cA [XI]) 

x exp[ - (1 - 281) dist(X~, W)/'[D] (5.2) 

for/3 sufficiently small according to c], 2, L', L, and 8~. Here 
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the s u m m a t i o n  is over  all X such tha t  X ~  X1 and X n  W e  r Moreover ,  if 
the above  sum is restricted to J ( = X 1  and X~aX1,  then c~ ~+w2 can be 
replaced by cc~ '+ w~, where c ~ 0 as /3  ~ 0. 

T h e o r e m  5.1 is the two-dimens iona l  version of L e m m a  9.4 of  Ref. 2. 
Since our  ~r differs f rom the d in Ref. 2, a factor/31Xol/2 is included in our  
estimate.  

We shall prove  T h e o r e m  5.1 for 7D = 1. Fo r  general  7D, we can use the 
change of variables )'D ~ TD/l, z --+ z12, ~ --+/3, 2 ~ 2, x ~ x/l, 0 ~ r (5 1 ~ (5 1, 
and so on. 

5.2.  According to our  expans ion  formula  (4.15), the left-hand side of 
(5.2) can be writ ten as sums over: 

1. n: the length of sequence 37. 

2. (m~), i =  1,..., n: Y~ is a union of mi sets Y~j. 

3. (Yo): choices of sets f rom Y. 

4. h: h should be compat ib le  with Y~j. 

5. ~ ds: in tegrat ion over  ds. 

6. T: the label increasing tree graphs.  We write 

T i s  a m a p p i n g  f rom {1,..., n} to {1 ..... n} such that  T( i )< i .  

7. Types  of  terms: ~c(i) is a sum of five types of  terms. 

8. (t): E ' s  are sums over  t~>2 of terms as in (4.13). 

9. A;, A;': i =  1 ..... n -  1. We write 

Yt+l YT(i+I) zl~zl~' zl; [' 

10. (a)=al , . . . ,  a, in (4.13) is a sequence of unit  lattice squares. (a) 
must  be compat ib le  with Y,7, L1;, A ~'. 

By (3.14), g ( a i ) =  ~,A~Y,A(ai). We define a formal  ope ra to r  e ~:L~ acting 
on 8(az) or  their derivatives l-Hi ~ j  6/(sff(xj)] g (a i )  as follows. Whenever  
e ~2c~ meets g(ai)  that  are taken  f rom the right side of e ~2L~ then 

e~2L~ g(a,) ~ ~ exp(62L,7~ ) E,7~(ai). 
r/A 

The ope ra to r  e 7~176 is defined to be a mult ipl icat ion by e y' if g ( a i ) =  

~ (a l  ..... at). 
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We define operators x " =  I]7+m I x"(i) as follows. K"(i) is one of the 
following five operators depending on the type in summation 7. The five 
operators are 

er~176 ,..., a t)  

dy 6 a f dxf~ 60(y ) C(x, y ) - -  

er~176 ea2C~ ( <' dx f ~ dy ~ 381 C (x, y) ~-~-~-~/13 82 ~ 

er~176176 dxf  3e 3)  dY C(x, Y) a-g(7 
\ a;' i 

erOoea2Co( f dxfady 3 68 ) 

Here, for each sequence a m ..... a t in 8, we have the restrictions U aj c Xi+l,  
A;uA;'c Ua/and Uaj~ Yi+I.~# ~ ,  for all s =  1, 2,..., mi+l. 

k e m m a  ft.2. Let 1/2 > 3m > 0 be fixed. For  any 32, c ] ,  cA > 0, there 
exist c~, r (in the definition of K") such that if fl is sufficiently small, then 

E Jf(X)I exp(cA [XI) 

~< sup exp(cAFm + c~ [XI) 

• exp[(1 - 23m + 62)d] e x p [ -  (1 - 231) dist(Xm, W)] 

x ~ d14 [eE(X,~)K', ea(X) eR(X) aglo 
d (5.3) 

where 62 is replaced by 1 -  261 + 62 in ~c". The summation in (5.3) is over 
all Xsuch  that X~_Xm and Xc~ W # ~ .  

We use the subscript 0 on the absolute value sign to mean that 
absolute value is taken inside the sum that results when all differentiations 
in tc" are performed and inside spatial integrals and sums over species. The 
sup means supremum over all compatible parameters listed in summations 
1 10. 

Proof of l_emma &2. This is identical to Lemma 9.4 in Ref. 2, except 
that their dimensions are different. We take the proof from there, which 
successively uses an inequality of the form 
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where dr(x) is a measure that is one of the ten summations in our list. 
Except for the summation 4, it is easy to see that the estimates of the rest of 
the summations remain true for the two-dimensional case. The estimate of 
summation 4 depends on the following inequality (Lemma 5.2 of Ref. 1): 
there exist c > 0 such that 

FI( Y, h) >~ c ~ [6h(f)l 2 (5.5) 
f 

where f runs over all internal lines of the lattice squares of size L in Y and 
3h(f) is the jump of the value of h between the two squares of size L joined 
at f Following the proof of Lemma 5.2 of Ref. 1 with R 3 replaced by R 2, 
we can prove (5.5) by choosing c=min{1/192, L2/24}, while 
c=min{L/432, L3/36} for the three-dimensional case. 

After we have done the estimates for summations from 1 to 10, 
we also use the following inequality to include the factor 
e x p [ - ( 1 - 2 3 ~ )  dist(X1, W)] for the right side of (5.3): 

(1 - 261) dist(X1, W)~<(1 -231)(d+Lo+2 I/2 IXI) (5.6) 

Here, X is a union of disjoint Yi, and each Yi is a union of disjoint Yij 
from ~-. (5.6) can be understood as follows. L0 controls the distances 
between Yi and 21/2 IX[ = 21/2 Z0 I Y~] controls the total distances inside all 
of the Yo. 

B.3. Proof of Theorem 5.1. We shall use the same formula as (9.25) 
of Ref. 2 to estimate the right side of (5.3) and obtain Theorem 5.1. Let 

~ d  ---- e--ReG2K"eGteG2eR~ 

b ( x ) = ( t p + g - h ) ( x ) - L - 2 j  ( O + g - h ) ( x ) d x  for x ~ Q~ 
(5.7) 

By H61der's inequality, the right side of (5.3) is bounded by (~is 
understood to mean integrations over X) 

sup exp [ - (1 - 231) dist(X1, W)ffD ] exp [ - (1 - CA )F1 

-- 27D 2 62 xHexp(-F2)Hpg eXp[ E+G2 l ip4 

P 

with p41 + p 2 1  + p - l =  1. 



20 Yang 

We shall use the following estimates. 

Proposition 5.3. Given c2 > 0 and P4/> 1, if 2 is sufficiently small, 
then there exists c such that 

exp (E+ G2-2T~2 f (~2 t p~exp(c]X]+c2F1) 

Here c goes to oo as 2 goes to zero. 

Proposition 5.4. There exists c(L') such that 

]lexp( - F2)]lp2 ~< exp[p2c(L') F1/2] 

and c(L') becomes arbitrarily small as L' is increased. 

Proposit ion 5.5. Let 

f 7<TD 2, B = 2  -1 ( 0 + g - h ) 2 + 2 7  -1 & 2 

Given P37 < 70 2, if 2 and L are sufficiently small and L' is sufficiently large, 
then there exist cl, c2 such that 

]lexp yBllp3 <<. exp(cl IXl + c2 IFll) 

Here c2 < 1, and c~ goes to oo as 2 goes to zero. 

Proposition 5.6. It is possible to choose 7 < 7r~ 2 such that, for any 
P3 > P, c'~,fl, ,52 if/~ is sufficiently small, then 

I ~ d l 0  exp [27D2 f ,52+c'8[Xl+(1-2,51+,52)dlp 

Q(fl, p3) Hexp yBl]p3 (5.9) 

Here Q(/?, P3) can be estimated as follows. 

(i) When XCXI,  for any c~,c2>0, if /~ is sufficiently small 
according to c~, c2, then there exist c(/~), c3 such that lim c(/~) -- 0 as/3 goes 
to zero, and 

exp(-ClFl +c2lXI)Q(fl, p3)~c(fl)c~'~+w~ll~N (5.10) 

(ii) When X =  X~, for any cl > 0, if B is sufficiently small according 
to cl, then there exist c3, c~ such that 

exp(--ClFl) Q(fl, p3)~c~+W2exp(c'~ IX]) fl Ix~ }l~l] (5.11) 

Here c3 is independent of 2 and lim c] = oo as 2 goes to zero. 
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Proof of Theorem 5.1 Assuming Propositions 5.3-5.6. In (5.8), we 
choose p - 1  so small that there exists p3>p and P37<l'D 2. By 
Propositions 5.3-5.6, we get an upper bound for (5.8), 

exp[-c lFl+c2 IXI - ( 1 - 2 5 1 )  dist(X~, W)/TD] Q(/~, P3) (5.12) 

By Proposition 5.6, when X #  X 1, (5.12) is bounded by 

I[~[1 c(/~) c~ '1+ w2 exp [ - (1 - 25t) dist(X~, W)/TD ] 

which goes to zero as/~ goes to zero. Therefore, when/~ is sufficiently small, 
(5.12) is bounded by the bound for the case X =  X1; namely, 

I[~[I f l [ X o I / 2 C ~  1 + w2 expEcA IXt[ - (1 - 2 ~ )  dist(X~, W)/7"D] 

for some CA > 0. This is the right side of (5.2). 

Proof of Proposition 5.3. This is the two-dimensional analogue of 
Lemma 9.9 of Ref. 2. The arguments in the proof of Lemma 9.9 of Ref. 2 
work also for our case: They are based on (1) estimates of g(a~), where we 
have obtained the same type of estimates in Section 3.2, and (2) bounded- 
ness from below of the operators C Z ~ uniformly in s and 2. This is also true 
in our case. 

Proof of Proposition 5.4. This is the two-dimensional analogue of 
Lemma 9.5 of Ref. 2. Using exactly the same argument as in Ref. 2, we 
obtain 

c(L')  = cl(L) c2c~(L') 

where cl(L) is the constant in (5.5), which can be chosen arbitrarily small 
by decreasing L. The term c3(L' ) goes to zero exponentially [ e x p ( - L ' / 8 ) ;  
see (9.418) of Ref. 2]. The c2 is supx~ dy ]C(x, Y)I, which is bounded by 
c~.(1-51) -2. Here we have used an estimate: For  any 61>0,  we can 
choose 2 so small that 

[C(x, Y)I ~ c~exp[ - (1 - St) I x -  y[ ] (5.13) 

where c~. goes to oo as 2 goes to zero. Therefore, we let 2 be small but non- 
zero, then we take L' large and L small according to c~. 

Proof of Proposition 5.5. This is the two-dimensional version of 
Lemrna 9.8 of Ref. 2. The main arguments in Ref. 2 also work for our case, 
except that, instead of assuming that []vll = supx~ Iv(x, y)J dy is small [see 
(9.622) of Ref. 2], we can prove that lira [Iv]l =0 ,  as Z goes to zero, by the 
reults in Section 3.2. After this step, the proof proceeds as in Ref. 2. 
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5.4. Proof of  Proposition 5.6. This is the two-dimensional version 
of Section 9.8 of Ref. 2. We shall follow the argument there. We note that 
our sr is slightly different from the ~r in Ref. 2, and we need a factor 
(/~)lx01/2 in our estimate. 

Let H =  exp(2~rg2 S 62); we shall estimate the LP-norm of 

H {(K"eate~2eRsd) e-Re-a2e-Clde ~21Xllo (5.14) 

Stop 1. We count the number of terms resulting from differentiations 
in ~c". Each derivative ~/O0 in ~c" can act on one of e [or g= G,(x i ) -  
ifll/ZeiO, if t = 2 ] ,  e R, e c~, e ~2, exp[ifll/Zfb(xi)ei] in so'. We write 6/6~ = 
Y',l (6/6~)t where ((5/6~)t can only act on one of the above five types of fac- 
tors. We write K"= Z~ ~c;'. Let n~ be the number of derivatives localized in 
A~, w~ be the number of factors in d that are localized in d~, and m~ be 
the number of factors of e or g that are from the g's and localized in A~. 
Then the number of terms resulting from the differentiations is bounded by 

[-I (ms + w~ + 3) n~ (5.15) 

We use the "exponential pinning lemma," Lemma9.10 of Ref. 2, which 
holds for the two-dimensional case with a change of constants: Given 
c' >0,  there exists c such that (5.15) is bounded by 

exp(c'Oo + c'd) c 2(n~+ w~) (5.16) 

By (5.15) and (5.16), (5.14) is bounded by 

sup ]lHc z'= exp(c ld+ c~ IXI) 
l 

• IK;'[exp(G1) exp(G2) exp(R)]d lo  e x p ( - R )  e x p ( -  GR)llp (5.17) 

where the constants in re;' have been increased and c~ > c2. 

Step 2. The operator exp(cld) ~c;' is of the form 

f J(x) ~~H~(x,)  (5.18) 

where J(x) is a product of C's and p"A's from (3.13) and includes the fac- 
tors prescribed by exp(cld), exp(cSLo), and exp(rOo). If x;' involves factors 
g, then some of the e's should be replaced by g's. The S in (5.18) is a com- 
bination of multiple integrals, where each one is over a unit lattice square, 
summation over species, and sum over q~'s. 
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We substitute (5.18) into (5.17); then (5.17) may be bounded by the 
following form: 

sup HI -  I (n~!)cW'exp(c~ ]Xl)f  [](x)l l-[ IT~.~[ p 
l ~ ~, i  

(5.19) 

where, for each A~, T~,~ is equal to 1 or equal to a derivative of one of the 
following types, labeled by i. The ] is the J multiplying ~. Since our .~r is 
different from the d in Ref. 2, we have included e from sg in type (iv). 

(i) exp[G~(A~)] =r(A).  

(ii) exp[i~l/2<k(xi)ei] from sJ. 

(iii) F~. 

(iv) e~(x), O(x), ge(x) from g, and ee(X) from sJ. 

(v) exp( i~ l /2e~A)-  1. 

(vi) exp(ifll/2e i 6)- -  1 - -  i f l  1/2 ei6 or 

exp(i~i/2e~6) - 1 - ifll/2eS) + fle2(~2/2 

Stop 3. Bounds on [T~,~I. We shall use the scheme in Ref. 2 to bound 
]T=,~]. To bound the nth derivative of type (i), we may choose c~, c2, c3, 
and 7<7~ 2 such that 

I(d"/dA ~) r(A)l ~ C1(C2fll/6) n exp(c3n log n + L2?A/2) (5.20) 

The proof of (5.20) is exactly the same as the proof of Lemma 9.7 in Ref. 2, 
except that we replace L 3 by L 2. The nth derivative of a term from (ii) is 
bounded by (ct31/2) n. The nth derivative of a term from (v) is bounded by 
(c/31/2)n-2 and the nth derivative of a term from (vi) is bounded by 
Cfl(16[2-n+ I g - h ]  2-n) if n < 2 ,  o r  ( c ~ 1 / 2 )  n if n~>2. The 0 in (iv)is boun- 
ded by 101. To bound ee and ge in (iv), we divide the lattice squares into 
two classes. Class A is the set of lattice squares in which g = h. Class B 
consists of the remaining lattice squares. In class A squares, ge is bounded 
by c,q I~,12 n if n < 2, (c~1/2) n if n/>2. In class B squares, ge is bounded by 
2+c/~mlOl if n = 0 ,  and (C[~1/2) n if n~>l. The nth derivative of e~ e is 
bounded by ( c f l l / 2 )  n if n/> 1. For undifferentiated e's, we separate them into 
distinguished ones and undistinguished ones. We bound an undistinguished 
e by 2 and a distinguished e by cB ~/2 ]01- We first choose a distinguished 
that is localized in each lattice square in class A, then choose three more 
distinguished ~'s localized in class A from each g. If this choice is 
impossible, then we choose as many as we can. 

The LP-norm of the product of O's and 6's resulting from bounds 
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of type (iv) and (vi) can be estimated by Wick's theorem: Let nj be the 
number of xi in the unit lattice square Aj; then there exists c such that 

~ ~'(xi) p<~CZnJI] (nj!) (5.21) 
�9 j 

Here c goes to c~ as 2 goes to 0. 
The factorials in (5.21) can be again estimated by the "exponential 

pinning lemma," Lemma 9.11 of Ref. 2: Given c ' > 0  and q, there exists c 
such that 

[ I  (nil)q ~< c z "~ exp(c'd) (5.22) 
c~ 

I~ (Nil) q <~ clxl exp[c '(Lo + d)] (5.23) 
a 

Here N~ is the number of factors of distinguished e's in ~c" that are localized 
in d , .  Inequalities (5.22) and (5.23) can be proved as in Ref. 2, with a slight 
change of constants. We note that our d is different from the ~r in Ref. 2, 
but that the number of distinguished e's localized in A~ is at most N~ + 1. 
Using the bound (N~+ 1)!~<2(Nfl) 2, we may apply (5.22) and (5.23) to 
estimate factorials in (5.21). 

The result of these estimates is that (5.19) can be bounded by ]]eTBl]p3 
Q(fl, P3), with p3>p. Here Q(fl, p3) is the supremum over compatible 
parameters of the form 

exp(c~ IX]) cSZW~fqfl r/6 f ]J] H(]F~]) H(] g - hi) 

Here, T/6 is the power of fl obtained from the above estimates. The factors 
exp(cld), exp(6L0), and exp(rOo) are included in J; constants Cl, 6 have 
been increased. Note that c is independent of 2, while c~ --* ~ as 2 ~ 0. The 
factor fq is defined by H~(n~!)-q(N~!) -q 

We shall show that Q(fl, p3) satisfies our estimates (i) and (ii) in 
Proposition 5.6. 

Step 4. We shall show that 

e-c3Fi/4 ec2lXI fll2C(2; ^ ,.2 X1)L/6 (5.24) 

goes to zero uniformly in X when ]X[>IX~I, and is bounded by 
exp(c2 IXal) when X =  XI, as fl goes to zero. 

Note that ]S~[ is bounded by a constant c times the number of 
segments of size L of discontinuities of h, where c =  c(L, L'). By (5.5), we 
then obtain 

exp( - c 1 F) ~< exp( - cl cfl- 1/2 [ X ~ [ ) (5.25) 



Debye Screening 25 

For any nonnegative integer q, we have 

exp(-clc13 1/2) ~< (ClC) q13q/2q! 

Therefore, for any nonnegative integer q, 

e x p ( - c l F 1 )  ~< [(Clr IZ^t (5.26) 

Let q = 1 in (5.26); we obtain 

e c3F1/4 ~ 132 [.z ̂ 1/6 (5.27) 

if fl is sufficiently small according to c3, L, L'. By (5.27), then (5.24) is 
bounded by 

ec21X113[[JG(z^ wxl)l + 2[Z^1]/6 ~. ec2[Xlfllx\xtl/6 

the right-hand side of which goes to zero uniformly in X for IX] > [Xt], and 
is bounded by exp(c 2 Ixal) when X =  X1, as fl goes to zero. 

S t e p  5. We shall prove that there exists c 5 > 0  such that, if 13 is 
sufficiently small, then 

c5[XI e--c3F1/4fi-1/61XMZ^ W Xl)l flT/6fl 31X0[/6 f I,)71 (5.28) e 

is bounded by Ilfil, for all X. 
Let J be a product of e) many p'A's and possibly some C's with 

exp(c~d), exp(6Lo), and exp(rOo) induced. In view of Theorems 3.1 and 
3.2, we must produce enough power of 13 to compensate the factors 13- 
that come from estimating the integrals of the p'A. 

We shall first show that 

T~> IX\ (Z  A w X 1 ) l  + 6 ~ + 3  IXol (5.29) 

if we allow (5.28) to include c Ixl exp(c'Lo). 
From our expansion, for each A E X \ ( X  A w X1),  either a distinguished 

~, a derivative of e, or a differentiation [0/c~9(x)] is localized in A. Each 
case produces at lest a factor of 131/6. For  an d ~ such that t/> 3, if there are 
two more distinguished or differentiated do's, then we have a factor of 13. 
For an do such that t = 2, if there is one more g or a derivative of g, we have 
a factor 13. Let S, IS[ =s ,  be the set of do's where the above choice is 
impossible. For  each g,. e S, there exists at least one e, which we call ~i, in ~. 
such that ei is not differentiated and localized in class B. To bound 6~o in 
the right side of (5.29), it is sufficient to prove that, for any c', c3 > 0, there 
exists c such that 

exp(-c3F1/8 ) <~ C Ixl exp(2c'Lo) f13s/2 (5.30) 
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To prove (5.30), we note that S contains at most two g ' s  from each ~"(j). 
We write S =  S~ w $2, where each Si contains at most one g from each 
K"(j). We shall consider $1 only, as $2 can be treated in the same way. Let 
[$1[ = sl. Let ql~ = the number  of ei localized in A, where ~.~ $1, ~ is from 
~c"(i), and A e Y~+ 1. We put q2~ = the number  of e~ localized in A, where 
g,,e $I ,  4 is from ~c"(i), and Ar Yi+l" 

If 4 (a )  contributes to q2a, then (a) must contain A and a lattice 
square in Y,+ 1. Recall that Y~+~ are disjoint. Therefore 

2 L,~(a)>~ ~ d(A, A j) (5.31) 
i 

where the left-hand side summations are over all i such that ~(a)  
contributes to qza; in the right-hand side summation A j, j =  1 ..... q2A, are 
chosen to be distinct and as close to A as possible. 

We sum over all A such that q2A r 0, to obtain 

2 d(A, Aj) <~ ~ L~(a) (5.32) 
A j 

Here the right-hand side summation is over all g (a )  ~ S~, the left-hand side 
summation is over all A such that q2,~ ~ O, j = l,..., q2z~, and A i are distinct 
and as close to A as possible. 

By exponential pinning [-see, e.g., (A2.2) in Ref. 2], for any c' > 0 there 
exists c such that 

[I(3q2~!)~clXlexplc'~d(A, Aj)]<~clXlexp(c'Lo) (5.33) 
A j 

By (5.26), there exists c > 0 such that, for i = 1, 2, 

e--~3Fl/32 <~ ~I Cq'~fl3q'~/2( 3qi~)! (5.34) 
,d 

where the product is taken over all A such that qi~ r 0. 
We note that ql~ ~< 1. By (5.33) and (5.34), we obtain that, for any 

c ' >  0, there exists c such that 

e-c3F1/16 ~ c[XI eC'Lofl3Sl/2 (5.35) 

We apply the same argument to $2; then we have proved (5.30), 
where c has been increased, c = c(L', L, c'). 

For  3 [Xo[ in the right side of (5.29), we shall separate Xo into an 
union of )(01 and )(02, where Xol is the union of squares in class A, and Xo2 
is the union of squares in class B. By (5.26), 

e-c3F1/8 ~ clXo2tf l3lx02t/6 (5.36) 
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For any square A in Xm, there exists an e from d localized in d. 
Whether e is differentiated or not, we obtain at least a power of fil/2. 
Combining this with (5.36), we obtain a power of 3 IX-0]. 

The factor exp(2c'Lo) is again absorbed in J. To estimate 5 [J], we 
note that the supremum of C exists; therefore, we may drop all C's in J. 
We obtain a product of S P "A's and [[(l[ as an upper bound for S ]J[, which 
may be estimated by Theorems 3.1 and 3.2. 

To show Lemma 6.1, we would like to estimate ~ ]J] in terms of [[C][, 
which is again bounded by supx ~ C(x, y) dy, whenever a factor C appears 
in J. If o r contains at least one C, we then drop all C's except one. Then the 
factor that includes C must be one of the following six types: 

f p(x ..... X,) C(xi, yj) P(Yl,..., Y/ ..... Y~) 

f p(x, ..... x,) C(x,, y) 

f C(x, y) 

f p(x, ..... x,) C(xi, yj) ((y~ ..... Y,,,+,,2) 

f C(yi ,  Yj) ~(Yl ..... YWl+W2) 

~(y~,, yw, +,,2) C(y,, y) 

Here, each p has a certain superscript r/a, and integrations in x's, y's are 
over certain lattice squares. We can estimate the above integrals by using 
IICll and possibly some of the following factors: 

i Jp(xl,..., xt)i, II~ll (5.37) 

sup f IP(Yl,..., Ys)[ dYl""dyj-1 dyj+l""dY~ (5.38) 

fadyi sup f'"flC(Yl,..., Ywl+w2)] [I dys (5.38') 
, yjEdj' Sr 

where, in (5.38), the supremum is taken Yi in R2; in (5.38'), Ai and Aj have 
disjoint interior. We may estimate the first factor of (5.37) and (5.38) by 
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using Theorems 3.1 and 3.2. Fro Lemma 6.1, ~ = p, we may estimate (5.38') 
and II~ll by (3.30) and (3.31). 

Combining the above estimates and (5.29), we find that if we choose c5 
to be sufficiently large, then (5.28) is bounded by LI~II, for all X, as/~ goes to 
zero. 

Stop 6. We shall prove that there exist q and cs > 0 such that, for fl 
sufficiently small, then 

e x p ( - c s  I X I - c 3 F ~ / 2 ) f q f H ( l g - h l ) H ( l F ' 2 l )  (5.39) 

is bounded by 1 for all X. 
Let A be a unit lattice square. We denote by Z f  the summation over 

all internal lines of the lattice squares of size L in A. By (7.19) Ref. 2 we 
have 

f g-hl2<~L~ 13h(f)l 2 (5.40) 
f 

The integral ~ [F~t can be bounded by { ~  ]F~I2) 1/2. By estimates 
(9.414)-(9.419) in Ref. 2, there exists c such that 

We may drop 1/2 from the right side of (5.41) because Y~f lab(f)[ 2 is either 
0 or greater than 1 if/3 is sufficiently small. 

The total factor of I X -  hl and IF~I localized in A is bounded by n~. By 
(5.5), (5.40), and (5.41), (5.39) is bounded by 

exp(-cslXl)expl-c3c'~l~h(f)12]fq~IC~16h(f)12]n~ (5.42) 

If we choose c5 to be sufficiently large, then (5.42) is bounded by 1, when/3 
goes to zero. 

Step 7. By steps 4, 5, and 6, there exists c ~ > 0  such that 
exp(-clF1)Q is bounded by 

I1~11 c~ w= exp(c~ [Xll ) /~ IX0[/2 (5.43) 

when X =  X1, for fi sufficiently small. Here c3 is independent of 2, while 
ca--+oo as 2--,0. When Ix l> lXl l ,  exp(-c~Fl+c2[Xl)Q is equal to 

c Z~= where c(/3) goes to zero as/~ goes to zero. This completes the II~ll c(/~) 3 , 
proof of Proposition 5.6. 
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6. PROOF OF T H E O R E M  2.1 

6.1. The following lemmas are analogous to statements in Sec- 
tion 9.9 of Ref. 2. 

L e m m a  6.1. Let d be of the form (5.1) with ( = p ~  ....... (Xl,..., x,,). 
Suppose 2 is chosen sufficiently small and fixed to be nonzero. If fl is 
sufficiently small according to 2, then 

1 1 
lim ~ o I ( d )  exists 

A .~ R 2 

The proof of Lemma 6.1 is based on the convergent expansion (4.14) 
and the Kirkwood-Salsburg equations. Once we have proved convergence 
of the cluster expansion (Theorem 5.1), the rest of the proof follows from 
the same arguments as in Appendix 4 of Ref. 2. Using the "doubling the 
measure" argument (see, e.g., Refs. 1 and 2), we also obtain the following 
lemma. 

Let Ax, Ay be unit lattice squares containing x, y, respectively. Let a's 
be lattice squares of size TD. We consider the following observables. Let 

d = d ( A  x, e I , . . . ,  e~, a2,..., a n )  

= i. dxl exp[ifll/2(~(xl)el] 
o A .r 

n 

x 1-[ ~ee/(X/) Pe, ....... (xl,---, x~) dx2---dxn (6.1) 
j = 2  

2 

~= I~ dxl f~ dx2 [I exp[ifll/20(xj)eJ] 
�9 ~' j =  1 

17 

x [ I  ~%(x j )  p~ ....... (x~,..., x,,) & ~ . . . d x ,  (6.2) 
j = 3  "aj 

Let 

~-=-~r en+ 1,... , en+~, an+2,..., an+m) 

Let X 1, X2, z~ 3 be the support of d ,  ~ ,  W, respectively. Let Y1 = UY= 2 aJ, 
Y2 = 0jQ2 aJ+~, and Y3 = 0~'=3 aj. We shall denote the distance of X~, X 2 
by d. 

Lemma 6.2. Let 0 < 6 1 < 1 / 2  be fixed; suppose we choose 2 
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sufficiently small but nonzero. Then there exist c3 (independent of )o) and 
CA such that if/~ is sufficiently small, then for all A we have 

~< c~ + "{exp [cA( IX1[ --F- I)(2l ) ]  } fl(I Yll + ]Y21 )/2 

x exp[ - (1 - 261) d/'[D] 

• kn(Ax, a2,..., an) km(Ay, a2+,,,..., am+ n) (6.3) 

I( cg >AI ~ cg[exp(cA tX3I )] fll r31/2 

xf~ y4, y,3""f~ lPe~ ....... (x~,...,x,,'Idx~'"dx,, (6.4) 

Here k,, is defined as in (3.15). 
The Ll-norm of p in (6.3) and (6.4) is from Theorem 5.1 if we replace 

d there by the present sO, N, and ~. Going through the proof of 
Theorem 5.1, in Proposition 5.6, we see that we have used the supremum 
norms of exp[ifl~/Z~(x)e], or a, or their derivatives with respect to ~b. 
Therefore we obtain the factor of the Ll-norm of the O's in (6.3) and (6.4). 

6.2. We consider the following correlation function of two-point 
charge densities in A: 

lf~xJ(x,)dxl f+J(x2)dx2)A- I fmJ(x l )dx l )~ i f~  J(xz)dx21~ 

We assume 

(6.5) 

d = d(Ax, A,,) >t 7D (6.6) 

We apply the sine-Gordon transformation to (6.5); then (6.5) can be 
written as fi t(I + II) [see, e.g., (9.912) of Ref. 2], where 

, a~(Xl) a~(x~) 

I I = f f  A ~M(O.--~)dXllA ~M(~)dx2) 
x ~r y ~r A 

(6.8) 

For any l '> lD,  we let 361= (l'--lD)/l'. If we choose ,;t so small that 
[ID -- To]/l' <~ 61, then (1 -- 261)/7D >1 (l') -1. Therefore, the following lemmas 
are sufficient for proving Theorem 2.1. 
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Lemma 6.3 .  Under the same conditions on 6~,2, and fi as in 
Lemma 6.2, there exists a constant c such that 

III ~< c~2fl 2 exp(--d/[D) (6.9) 

IIII <~ c52fl e x p [ - ( 1  - 26~) dffD] (6.10) 

k e m m a  6.4. Under the same conditions on 6~,2, and fl as in 
Lemma 6.2, the infinite-volume limit exists for I, II, respectively. 

Proof of Lemma 6.3. By (3.3), M(~b) is a summation over n and over 
(a) of g(a). For each g(a), 

f [ac(a)/aO(x,)] 
is a summation of at most n terms of the form (6.1), and 

~--igl! ff [a24(a)/a6(Xl) ar dXl dx2 
is a summation of at most n ( n - 1 )  terms of the form (6.2). Here xl and x2 
are integrated over Ax, Ay, respectively. Let co be the minimal number of 
lattice squares of size 70 such that their union covers A,. w A3.. By (6.4), III 
is bounded by 

fi(n!)-~ ~ S 2 n(n 1)c s __ n cwcA 

n = 2 e l , . . . , e  n a 3 , . . . , a  n 

y 3 n 

for fl sufficiently small. 
By Theorem 3.4, (6.11) is bounded by 

fi ~ n ( n -  1)(2C3)"[exp(coCA)] c(fl) 2(~:")" 
n - -  2 

xe  Xp-l(llwll") 2~b,Axexp[--L~A(A.~,A3,)TD] (6.12) 
r/A 

We note that c(fl) is bounded as fl goes to zero. We first choose 2 so 
small that 2g"C 3 < 1 and we choose fi to be sufficiently small according to 
2; then (6.12) is bounded by a constant times 22fl~ exp(--dffD). 

We shall apply (6.3) to estimate II. If fl is sufficiently small according 
to CA and hence to 2, then jill is bounded by 

1 1 
fl ~ ~'~ nm-~..-~.c'~+m[exp(cocA)] 2"2 m 

n ~ l  m ~ l  

x ~. E k,(A,,, a 2 ..... a,) km(zJv, a 2 + ...... a m +,) 
(a)  (a ' )  

- ( 1  -28~)  dist(X~, X2) 
xexp ~r D (6.13) 

822/49/'1-2-3 
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By Theorem 3.1, (6.13) is bounded by 

( - ( 1 - 2 6 , ) d )  
fl exp T-o 

x 2 (n 1 ) ! c n ( c 0 ( 2 c 3 ) " ~ b ~ e x p - 2 6 1 L " ~ ] 2  ,,>~, (~) ,A ~ -j (6.14) 

Using the estimate of cn(a) in Theorem 3.1 with ~ = 1, we may bound 
(6.14) by 

/3 e x p - ( 1 - 2 3 1 ) d ( A x ,  Ay) ~ e~ Ilw]~---~ (2c3)n[c(61)]n-1 (6.15) 
ID /~n/> 1 

Here c(61) is obtained by (3.7), which is an estimate of summing over (a). 
If we choose 2 so small that 2Kc3c(61)< 1, then (6.15) is bounded by a 
constant times 

flZ 2 e x p [ -  (1 - 261) d(A~, Ay)~D]  

Proof of Lomma 6.4. From the proof of Lemma 6.3, we find that I 
and II are convergent series uniform in A. Each term in the series has a 
limit as A ,~ R 2, and therefore I and II have limits as A ,~ R 2. 
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